中国科技期刊研究 ›› 2024, Vol. 35 ›› Issue (12): 1757-1766. doi: 10.11946/cjstp.202406100640

• 数字出版 • 上一篇    下一篇

机器翻译医学论文摘要的现状分析及作者与编辑协同路径研究

夏玲1)()(), 向晓莉2), 李宜蔓1), 吴虹丽3), 李宜博1), 刘爽4),*()()   

  1. 1) 中国医学科学院输血研究所《中国输血杂志》编辑部,四川省成都市成华区华彩路26号 610052
    2) 四川省卫生健康发展研究中心《中国计划生育和妇产科》编辑部,四川省成都市武侯区人民南路四段15号 610041
    3) 成都大学《中国抗生素杂志》编辑部,四川省成都市龙泉驿区成洛大道2025号 610106
    4) 中国医学科学院血液病医院(中国医学科学院血液学研究所)《中华血液学杂志》编辑部,天津市和平区南京路288号 300020
  • 收稿日期:2024-06-10 出版日期:2024-12-15 发布日期:2025-02-01
  • 通讯作者: *刘爽(ORCID:0000-0002-7419-4552),硕士研究生,编辑,E-mail:liushuang@ihcams.ac.cn。
  • 作者简介:
    夏玲(ORCID:0000-0003-0551-1988),硕士,编辑,编辑部副主任,E-mail:
    向晓莉,本科,编审;
    李宜蔓,学士,编辑;
    吴虹丽,硕士研究生,编辑;
    李宜博,硕士研究生,编辑。
    作者贡献声明: 夏 玲:提出研究方向,设计论文框架,实施调研,整理与分析数据,撰写并修订论文; 向晓莉,李宜蔓,吴虹丽,李宜博:参与调研,收集数据,修订论文; 刘 爽:优化研究思路,实施调研,收集与分析数据,绘制图片,审核并修订论文。
  • 基金资助:
    中国科学院自然科学期刊编辑研究会课题项目“机器翻译科技论文摘要的现状分析及作者与编辑协作路径研究”(YJH202410); 中国科学技术期刊编辑学会基金项目“医学期刊编辑规范的特征与趋势研究”(HBJH-2023-D48)

Current application status of machine translation in medical paper abstracts and collaborative pathway between authors and editors

XIA Ling1)()(), XIANG Xiaoli2), LI Yiman1), WU Hongli3), LI Yibo1), LIU Shuang4)()()   

  1. 1) Editorial Office of Chinese Journal of Blood Transfusion , Institute of Blood Transfusion, Chinese Academy of Medical Sciences, 26 Huacai Road, Chenghua District, Chengdu 610052, China
    2) Editorial Office of?Chinese Journal of Family Planning & Gynecotokology , Sichuan Provincial Health Development Research Center, 15 Renmin South Road Section 4, Wuhou District, Chengdu 610041, China
    3) Editorial Office of Chinese Journal of Antibiotics , Chengdu University, 2025 Chengluo Avenue, Longquanyi District, Chengdu 610106, China
    4) Editorial Office of Chinese Journal of Hematology , Hospital of Hematology, Chinese Academy of Medical Sciences (Institute of Hematology, Chinese Academy of Medical Sciences), 288 Nanjing Road, Heping District, Tianjin 300020, China
  • Received:2024-06-10 Online:2024-12-15 Published:2025-02-01

摘要:

【目的】调查机器翻译在医学论文摘要翻译中的应用现状,识别关键问题,并探索有效的机器翻译协同路径。【方法】采用问卷调查法,面向医学期刊编辑和作者收集关于机器翻译的认知、使用行为和质量评价的数据。【结果】共收集193名编辑和489名作者的数据。93.66%的作者和87.57%的编辑会在学术翻译中使用在线机器翻译,并有系统偏好。90.68%的编辑接受机器翻译作为辅助工具,75.65%认为其在一定程度上可减轻工作量。61.14%的编辑、44.58%的作者会在机器翻译前积极优化原文;58.69%的作者表示有译后编辑,但只有29.02%的编辑认可作者于投稿前进行译后编辑。51.12%的作者和29.02%的编辑对机器翻译加作者修改的摘要质量表示满意;编辑审校后的摘要质量得到70.46%的编辑和42.74%的作者的较高评价。【结论】机器翻译在医学论文摘要翻译中被广泛采用,但存在使用习惯和质量评价差异。建议建立从作者到编辑的协同路径,培养机器翻译有效使用能力,以促进机器翻译与医学科技期刊出版的深度融合,提高翻译质量和效率。

关键词: 医学科技期刊, 机器翻译, 英文摘要, 人工智能

Abstract:

[Purposes] This study aims to investigate the current application status of machine translation (MT) in the translation of medical paper abstracts, identify key issues, and explore effective collaborative pathways for MT. [Methods] We conducted a questionnaire survey to collect data from medical journal editors and authors regarding their awareness, usage behavior, and quality evaluation of MT. [Findings] Data are collected from 193 editors and 489 authors in this survey. Totally 93.66% of authors and 87.57% of editors use online MT for academic translation and have system preferences. 90.68% of editors accept MT as an auxiliary tool, and 75.65% consider that it has reduced their workload to a certain degree. 61.14% of editors and 44.58% of authors actively optimize the original text before using MT. 58.69% of authors state that they conduct post-editing, but only 29.02% of editors recognize that authors have done post-editing before submission. 51.12% of authors and 29.02% of editors are satisfied with the quality of abstracts after MT and author modifications. The quality of abstracts after editorial review is highly rated by 70.46% of editors and 42.74% of authors. [Conclusions] MT is widely adopted in the translation of medical paper abstracts, but differences exist in usage habits and quality evaluations. It is recommended to establish a collaborative pathway from authors to editors, cultivate the ability to use MT effectively, and promote the in-depth integration of MT into the publication of medical scientific journals, so as to improve translation quality and efficiency.

Key words: Medical scientific journal, Machine translation, English abstract, Artificial intelligence