中国科技期刊研究 ›› 2024, Vol. 35 ›› Issue (7): 948-956. doi: 10.11946/cjstp.202401210065

• 能力建设 • 上一篇    下一篇

生成式人工智能应用于编校工作的探索与分析——基于ChatGPT和150余款国产大模型的实测

夏丽云1,2)()(), 岳于佳2), 徐敏赟2), 丁懿楠3),*()(), 代建华2)   

  1. 1) 湖南师范大学期刊社,湖南省长沙市岳麓区麓山南路36号 410081
    2) 智能计算与语言信息处理湖南省重点实验室,湖南省长沙市岳麓区麓山南路36号 410081
    3) 北京外国语大学国际关系学院《国际论坛》编辑部,北京市海淀区西三环北路2号 100089
  • 收稿日期:2024-01-21 修回日期:2024-05-20 出版日期:2024-07-15 发布日期:2024-08-02
  • 通讯作者: 丁懿楠
  • 作者简介:

    夏丽云(ORCID:0009-0000-5387-2353),硕士,编辑,E-mail:

    岳于佳,本科生

    徐敏赟,博士研究生

    代建华,博士,教授。

    作者贡献声明: 夏丽云:提出论文选题,设计研究框架,起草和修改论文; 岳于佳:测试模型,起草和修改论文; 徐敏赟:测试模型,查找文献资料,起草和修改论文; 丁懿楠:设计论文思路和研究方案,修改论文; 代建华:提供技术指导,修改论文。
  • 基金资助:
    北京外国语大学中央高校基本科研业务费专项资金“外国语言文学学科影响力排名及数据库建设”(2021JS003)

Exploration and analysis of generative artificial intelligence in editing and proofreading: Based on practical tests of ChatGPT and over 150 Chinese large models

XIA Liyun1,2)()(), YUE Yujia2), XU Minyun2), DING Yinan3),*()(), DAI Jianhua2)   

  1. 1) Journal Office of Hunan Normal University, 36 Lushan South Road, Yuelu District, Changsha 410081, China
    2) Hunan Provincial Key Laboratory of Intelligent Computing and Language Information Processing, 36 Lushan South Road, Yuelu District, Changsha 410081, China
    3) Editorial Office of International Forum, School of International Relations and Diplomacy, Beijing Foreign Studies University, 2 Xisanhuan North Road, Haidian District, Beijing 100089, China
  • Received:2024-01-21 Revised:2024-05-20 Online:2024-07-15 Published:2024-08-02
  • Contact: DING Yinan

摘要:

【目的】 系统梳理和测试当前互联网中可获取和使用的大模型在编校方面的表现,明晰现有大模型的强项与不足,为编辑人员选用大模型进行编校提供参考,为推动模型编校能力发展提供依据。【方法】 设计不同类型、不同难度等级差错文本,综合使用文本对比法、比较分析法、统计分析法等方法,根据模型回答的结果判断其准确率与稳定性。【结果】 发现已有58款大模型具备编校能力;展示36款大模型处理不同类型和不同难度文本时的表现;归纳大模型在测试中表现出来的不足;国产大模型与ChatGPT相比具有优势。【结论】 在实践层面,编辑可以选择合适的模型辅助编校工作;建立知识库,探索个性化的模型编校方式;使用角色设定和思维链询问方法以提高效率;进一步提升信息素养和专业技能。

关键词: 大模型, 人工智能, 编辑校对, 实测

Abstract:

[Purposes] This study systematically reviews and tests the performance of currently available large models on the internet in terms of editing and proofreading. It aims to clarify the strengths and weaknesses of the existing large models, provide references for editors choosing large models for editing and proofreading, and offer a basis for advancing the development of these models' capabilities of editing and proofreading. [Methods] Different types of texts with varying complexity levels of error were designed to evaluate the accuracy and stability of the models' responses. Methods such as text comparison, comparative analysis, and statistical analysis were comprehensively employed. [Findings] 58 models demonstrate editing and proofreading capabilities. The study showcases the performance of 36 models when handling different types and levels of textual complexity, summarizes the shortcomings observed during testing, and shows that the Chinese models have comparative advantages over ChatGPT. [Conclusions] In practical aspects, editors can select appropriate models to assist with their tasks, establish knowledge bases and personalized model-based editing and proofreading methods, use role setting and chain of thought inquiry methods to improve efficiency, and further enhance their information literacy and professional skills.

Key words: Large model, Artificial intelligence, Editing and proofreading, Practical test