中国科技期刊研究 ›› 2024, Vol. 35 ›› Issue (10): 1357-1364. doi: 10.11946/cjstp.202403210259

• 生成式人工智能专题 • 上一篇    下一篇

生成式人工智能对科技期刊署名管理的挑战及应对

王少()()   

  1. 同济大学马克思主义学院,上海市杨浦区四平路1239号 200092
  • 收稿日期:2024-03-21 修回日期:2024-07-27 出版日期:2024-10-15 发布日期:2024-11-12
  • 作者简介:

    王少(ORCID:0000-0003-1743-1862),博士,副教授,博士生导师,E-mail:

Challenges of generative artificial intelligence in authorship management of scientific journals and countermeasures

WANG Shao()()   

  1. School of Marxism, Tongji University, 1239 Siping Road, Yangpu District, Shanghai 200092, China
  • Received:2024-03-21 Revised:2024-07-27 Online:2024-10-15 Published:2024-11-12

摘要:

【目的】

探析生成式人工智能对科技期刊署名管理的挑战,并寻找应对策略。

【方法】

基于理论分析和对生成式人工智能的技术考察,探查生成式人工智能对科技期刊署名权保护的影响,以及对科技期刊署名管理造成的阻碍。

【结果】

生成式人工智能深度介入作品创作后,既影响作者身份认定,又阻碍署名推定。生成式人工智能的智能转码、数据挖掘和文本输出等行为遮蔽署名侵权,影响科技期刊对不当署名问题的治理,妨碍科技期刊对优先权的确认。

【结论】

科技期刊要利用智控技术,防止期刊论文被肆意挖掘和随意转码,及时调查处理未经授权的训练以保护署名权和优先权,并将不当署名治理与责任承担更加紧密地联系起来,从而进一步完善署名管理。

关键词: 生成式人工智能, 署名管理, 署名权, 优先权, 不当署名

Abstract:

[Purposes]

This study aims to explore the challenges of generative artificial intelligence in authorship management of scientific journals and to find corresponding strategies.

[Methods]

Based on theoretical analysis and technical investigation of generative artificial intelligence, we explored the influence of generative artificial intelligence on the protection of authorship rights in scientific journals and the obstacles it posed to authorship management in scientific journals.

[Findings]

The deep intervention of generative artificial intelligence in the creation of works not only affects the identification of author identity but also hinders the inference of authorship. Intelligent transcoding, data mining, and text output obscure authorship infringement, affecting the governance of inappropriate authorship issues by scientific journals and hindering the confirmation of priority rights by scientific journals.

[Conclusions]

Scientific journals need intelligent control technologies to prevent journal articles from being arbitrarily mined and transcoded, promptly investigate and address unauthorized training to protect the right of authorship and priority, and more closely link inappropriate authorship governance with responsibility, in order to further improve authorship management.

Key words: Generative artificial intelligence, Authorship management, Right of authorship, Priority, Inappropriate authorship