中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (1): 104-112. doi: 10.11946/cjstp.202406170662

• 评价与分析 • 上一篇    下一篇

中文科技期刊科学数据引用行为的实证分析——以计算机技术领域为例

王浩毅()()   

  1. 《郑州大学学报(理学版)》编辑部,河南省郑州市科学大道100号 450001
  • 收稿日期:2024-06-17 修回日期:2024-12-14 出版日期:2025-01-15 发布日期:2025-02-11
  • 作者简介:

    王浩毅(ORCID:0000-0003-2865-8376),硕士,编辑,E-mail:

Empirical analysis of scientific data citation behavior in Chinese scientific and technical journal: Taking the field of computer technology as an example

WANG Haoyi()()   

  1. Editorial Office of Journal of Zhengzhou University(Natural Science Edition), 100 Science Avenue, Zhengzhou 450001, China
  • Received:2024-06-17 Revised:2024-12-14 Online:2025-01-15 Published:2025-02-11

摘要:

【目的】 通过调查计算机技术领域科技期刊中科学数据引用行为,探究该领域研究人员的科学数据引用特征,为科技期刊制定科学数据引用细则、数据仓储和共享平台管理科学数据提供实证参考。【方法】 采用抽样调查法对计算机技术领域的科学数据集引用行为的一般特征、元数据特征以及数据集来源特征进行调查。【结果】 在计算机技术领域,科学数据集的引用行为较为普遍,但引用规范性不足,主要表现为标引形式多样、引用元数据不完整以及数据集唯一标识符缺失。此外,引用数据集的来源以高校和研究所为主。【结论】 应进一步将我国科学数据引用标准在科技期刊中推广落实,推动元数据管理的标准化与规范化,完善数据集唯一标识符体系,加强高校、研究所与商业机构的协作,提升科学数据的共享与重用效率,提高科研质量与效率。

关键词: 科学数据引用, 计算机技术领域, 引用实践, 科技期刊, 元数据管理

Abstract:

[Purposes] Through investigating the citation practices of scientific data in the field of computer technology, this study explores the characteristics of researchers’ scientific data citation behaviors in this domain, providing empirical support for formulating scientific data citation guidelines for scientific and technical journals as well as for managing data repositories and sharing platforms. [Methods] A sampling survey method was employed to examine the general characteristics, metadata features, and data source attributes of the citation behavior of scientific datasets in the field of computer technology. [Findings] The findings indicate that the citation of scientific datasets is relatively common in this field; however, citation practices lack standardization, which is mainly reflected in diverse citation formats, incomplete citation metadata, and the absence of unique dataset identifiers. Additionally, universities and research institutes are the primary sources of cited datasets. [Conclusions] It is essential to further promote the adoption of national scientific data citation standards, enhance the standardization and regulation of metadata management, and improve the dataset unique identifier system. Furthermore, strengthening collaboration among universities, research institutes, and commercial entities can increase the efficiency of scientific data sharing and reuse, thereby improving research quality and efficiency.

Key words: Scientific data citation, Computer technology field, Citation practices, Scientific and technical journal, Metadata management