中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (9): 1135-1142. doi: 10.11946/cjstp.202506230733

• 论坛 • 上一篇    下一篇

AI赋能科技期刊知识服务的实施框架与路径

彭希珺()(), 华宁*()()   

  1. 中国科学院文献情报中心,北京市海淀区北四环西路33号 100190
  • 收稿日期:2025-06-23 出版日期:2025-09-25 发布日期:2025-10-28
  • 通讯作者: 华宁
  • 作者简介:

    彭希珺(ORCID: 0000-0001-5307-7093),硕士,副研究馆员,E-mail:

    作者贡献声明: 彭希珺:提出研究选题并设计研究框架,撰写并修改论文; 华 宁:案例调研,撰写并修改论文。
  • 基金资助:
    中国科学院精品科技期刊建设试点项目

AI-enabled intelligent knowledge service framework for scientific journals

PENG Xijun()(), HUA Ning*()()   

  1. National Science Library,Chinese Academy of Sciences,33 Beisihuan Xilu,Haidian District,Beijing 100190,China
  • Received:2025-06-23 Online:2025-09-25 Published:2025-10-28
  • Contact: HUA Ning

摘要:

目的 探索人工智能(AI)驱动科技期刊知识服务转型的发展路径与框架体系,为科技期刊智能知识服务提供实践参考。方法 系统剖析科技期刊智能知识服务的演化特征,结合国内外行业案例调研,分析AI政策导向、技术布局与实践应用,归纳其技术应用策略。结果 提出构建科技期刊智能知识服务的“场景-资源-模型-政策”四维体系框架,具体包括:基于期刊资源建设可信赖的AI语料库;依托学科知识和出版规范保障模型专业性;研发场景驱动的AI应用以及完善科技期刊的AI治理体系。结论 AI for Science(AI4S)加速科技期刊向智能知识服务转型。科技期刊行业应加快制定AI发展战略,并形成可执行的实施路径。

关键词: 人工智能, 科技期刊, 知识服务, 大语言模型, AI4S

Abstract:

Purposes To explore the development path and framework of AI-driven transformation for scientific journals’ knowledge service, and provide practical references for intelligent knowledge services in scientific journals. Methods Firstly, we conducted a systematic analysis of the characteristics and evolutionary process of the intelligent knowledge service of scientific journals. Next, we presented a case study of the STM publishing industry, and then analyzed the deployment of AI policies, the integration of AI technologies and the development of AI applications. Finally, we provided an AI application strategy for scientific journals. Findings We proposed a four-dimensional framework of “Scene-Resource-Model-Policy” for the intelligent knowledge service of scientific journals. Specifically, this includes: constructing a trustworthy AI corpus based on journal resources, guaranteeing model professionalism based on domain knowledge and publishing standards, developing scenario-driven AI applications, and improving the AI governance system of scientific journals. Conclusions AI for Science (AI4S) is accelerating the transformation of scientific journals into intelligent knowledge services. The STM publishing industry should develop AI strategies, and establish feasible implementation plans.

Key words: Artificial intelligence, Scientific journals, Knowledge services, Large language model, AI4S