中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (7): 886-896. doi: 10.11946/cjstp.202503100232

• 论坛 • 上一篇    下一篇

我国学者随机生成内容撤销论文的特征分析与防范对策

周志新1,2)()(), 高健1), 关冰1), 曹金磊1)   

  1. 1) 新乡医学院卫生健康管理学院,河南省新乡市红旗区金穗大道601号 453003
    2) 新乡医学院河南省科技期刊研究中心,河南省新乡市红旗区金穗大道601号 453003
  • 收稿日期:2025-03-10 修回日期:2025-04-25 出版日期:2025-07-31 发布日期:2025-07-31
  • 作者简介:

    周志新(ORCID: 0000-0002-2678-7599),博士,教授,硕士研究生导师,E-mail: ;

    高 健,硕士研究生;

    关 冰,硕士研究生;

    曹金磊,硕士研究生。

    作者贡献声明: 周志新:提出论文选题,设计论文框架,分析数据,撰写、修改论文; 高 健:检索、收集、分析数据,撰写、修改论文; 关 冰:检索、收集数据; 曹金磊:检索、收集数据。
  • 基金资助:
    河南省高校哲学社会科学应用研究重大项目“我国高校学术不端发现处理机制与多元共治研究”(2025-YYZD-14); 河南省软科学研究计划项目“我国高校学者论文被撤销原因多维分析及应对策略研究”(242400410006)

Characteristic analysis and countermeasures for retracted papers with randomly generated content by Chinese scholars

ZHOU Zhixin1,2)()(), GAO Jian1), GUAN Bing1), CAO Jinlei1)   

  1. 1) School of Health Management, Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, China
    2) Henan Research Center for Science Journals, Xinxiang Medical University, 601 Jinsui Avenue, Hongqi District, Xinxiang 453003, China
  • Received:2025-03-10 Revised:2025-04-25 Online:2025-07-31 Published:2025-07-31

摘要:

【目的】分析我国学者随机生成内容(randomly generated content,RGC)撤销论文的相关特征,为有效防范因RGC撤稿提供参考。【方法】通过撤稿观察数据库(retraction watch database,RWD),检索获取我国学者RGC撤销论文数据,研究分析其时间分布、撤稿时滞、作者数量、地域与机构分布、载体与学科分布、撤稿原因等特征。【结果】2020年之后,我国RGC撤销论文量剧增,撤稿时滞高于全球水平;华东、华南和华中等地区因RGC撤稿问题较为严重,且机构分布以高校为主;文献类型主要集中在研究文章,Hindawi撤销论文量最多;RGC撤销论文的学科分为“3大技术性核心学科及其应用领域”“基础生命科学”“健康科学”3类;RGC撤销论文表现出跨学科、多元撤销原因的特征。【结论】高度警惕我国学者RGC使用规范问题,提高学术不端行为监管和发现力度,并重视RGC撤销论文地域、机构类型、载体、学科分布特征以及撤稿原因多元性,提升相关对策措施针对性、学术不端治理有效性。

关键词: 生成式人工智能, 随机生成内容, 学术不端, 撤稿, 科研诚信

Abstract:

[Purposes] To analyze the characteristics of papers withdrawn due to randomly generated content (RGC) by Chinese scholars, providing reference for domestic scientific journals, researchers, and relevant government departments to effectively address the academic misconduct issues arising from RGC abuse. [Methods] Data on RGC-related paper withdrawals by Chinese scholars were retrieved from the Retraction Watch database. The study analyzed characteristics such as temporal distribution, retraction delay, number of authors, regional and institutional distribution, publication medium and discipline distribution, and reasons for retraction. [Findings] Since 2020, the number of RGC-related paper withdrawals in China has increased sharply, with a retraction delay higher than the global average. The regions of East China, South China, and Central China are particularly affected by RGC-related retractions, with institutions involved predominantly being universities. The majority of retracted papers are research articles, with Hindawi having the highest number of retracted papers. The subjects of RGC paper retraction can be classified into three categories: the three major core technical disciplines and their application fields, basic life sciences, and health sciences. RGC-related retractions display interdisciplinary characteristics and diverse reasons for retraction. [Conclusions] It is recommended to remain highly vigilant regarding the normative use of RGC by Chinese scholars, strengthen the supervision and detection of academic misconduct, and pay close attention to the regional, institutional, publication, and disciplinary characteristics of RGC-related retractions, as well as the diversity of retraction reasons. These efforts aim to enhance the relevance of countermeasures and improve the overall effectiveness of academic misconduct governance.

Key words: Generative artificial intelligence, Randomly generated content, Academic misconduct, Retraction, Research integrity