中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (5): 611-620. doi: 10.11946/cjstp.202503050207

• 数字出版 • 上一篇    下一篇

科技期刊微信公众号人工智能内容议题设置优化策略研究

杨琳1,2)(), 袁天豫1,2), 段若阳1,2), 李祉祺1,2),*()   

  1. 1) 中国科学院文献情报中心,北京市海淀区北四环西路 33 号 100190
    2) 中国科学院大学经济与管理学院信息资源管理系,北京市海淀区北四环西路 33 号 100190
  • 收稿日期:2025-03-05 修回日期:2025-05-10 出版日期:2025-05-25 发布日期:2025-06-04
  • 通讯作者: *李祉祺(ORCID:0009-0002-5955-0966),硕士研究生,E-mail: llzhiqi0205@163.com。
  • 作者简介:

    杨琳(ORCID: 0000-0002-6633-5925),博士,研究馆员,硕士研究生导师,E-mail: ;

    袁天豫,硕士研究生;

    段若阳,硕士研究生。

    作者贡献声明: 杨琳:确定选题,设计论文框架,撰写、修订、审核论文; 袁天豫:参与设计实施方案,参与收集数据; 段若阳:参与收集数据; 李祉祺:设计实施方案,收集、分析数据,撰写、修订论文。
  • 基金资助:
    中国科学院文献情报中心项目“国外主要科学资助机构关键核心技术领域科普模式研究与启示”(E2291911); 北京华尊建设集团有限公司项目“科技创新成果展示传播策略研究及咨询”(E490021000)

Research on the optimization strategy of the content agenda setting of artificial intelligence in the WeChat official account of scientific journals

YANG Lin1,2)(), YUAN Tianyu1,2), DUAN Ruoyang1,2), LI Zhiqi1,2)()   

  1. 1) National Science Library, Chinese Academy of Sciences, 33 Beisihuan Xilu, Haidian District, Beijing 100190, China
    2) Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, 33 Beisihuan Xilu, Haidian District, Beijing 100190, China
  • Received:2025-03-05 Revised:2025-05-10 Online:2025-05-25 Published:2025-06-04

摘要:

【目的】探究科技期刊微信公众号中人工智能内容议题的焦点、趋势及盲点,促进科技期刊融合发展。【方法】研究借助Python爬取近5年相关文章,运用BERTopic方法剖析热点及演化趋势,利用Gephi聚类梳理国家人工智能政策体系,对比找出议题设置盲点。【结果】关议题分为技术、应用、产品服务和伦理4个维度;对数据规范、模型基础设施、场景覆盖、市场化产品、权益保护、技术/数据安全以及行业规范等议题的讨论有所欠缺;未来人工智能在技术上聚焦模型数据/训练、生成式大模型;蛋白质分子和地质勘测或成热门应用场景;伦理治理将受热议。【结论】据此提出“技术-应用-产品-风险”四维策略优化框架,为科技期刊深度融合发展提供策略支持。

关键词: 科技期刊, 人工智能, 主题演化, BERTopic, 议题设置

Abstract:

[Purposes] This study aims to explore the focal points, trends, and blind spots of artificial intelligence content topics in the WeChat official accounts of scientific and technological journals, so as to promote the integrated development of scientific journals. [Methods] Python was used to crawl relevant articles in the past five years. The BERTopic method was applied to analyze the hot topics and their evolutionary trends, and the Gephi clustering method was utilized to sort out the national artificial intelligence policy system. By comparing, the blind spots in topic setting were identified. [Findings] The relevant topics can be divided into four dimensions: technology, application, product service, and ethics. There is a lack of discussion on issues such as data specification, model infrastructure, scenario coverage, market-oriented products, rights protection, technology/data security, and industry standards. In the future, artificial intelligence technology will focus on model data/training and generative large-scale models. Protein molecules and coal mining may become popular application scenarios, and ethical governance will be a hot topic. [Conclusions] Based on this, a four-dimensional strategic optimization framework of “technology-application-product-risk” was proposed to provide methodological support for the in-depth integrated development of scientific journals.

Key words: Scientific journals, Artificial intelligence, Topic evolution, BERTopic, Agenda setting