中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (10): 1346-1354. doi: 10.11946/cjstp.202505030456

• • 上一篇    下一篇

大语言模型辅助医学期刊英文摘要编校的效能评估

左双燕1)()(), 翟若南1), 陈玉华1), 吴珊珊1), 任南2,3), 黄勋2,3), 李春辉2), 吴安华1,2), 高武强2,3,4)()()   

  1. 1) 中南大学湘雅医院湘雅医学学术促进中心《中国感染控制杂志》编辑部,湖南省长沙市开福区湘雅路87号 410008
    2) 中南大学湘雅医院医院感染控制中心,湖南省长沙市开福区湘雅路87号 410008
    3) 全国医疗机构感染监测网,湖南省长沙市开福区湘雅路87号 410008
    4) 中南大学湘雅医院信息中心,湖南省长沙市开福区湘雅路87号 410008
  • 收稿日期:2025-05-03 修回日期:2025-09-20 出版日期:2025-10-25 发布日期:2025-11-14
  • 作者简介:

    左双燕(ORCID: 0009-0000-4316-8178),硕士,编辑,编辑部副主任,E-mail:

    翟若南,博士,编辑

    陈玉华,硕士,编辑

    吴珊珊,硕士,编辑

    任 南,博士,教授

    黄 勋,博士,教授

    李春辉,博士,教授

    吴安华,博士,教授。

    作者贡献声明: 左双燕:提出选题设计,设计研究方案,测试模型,起草和修改论文; 翟若南:测试模型,查找文献,修改论文; 陈玉华:测试模型,查找文献,修改论文; 吴珊珊:查找文献,修改论文; 任 南,黄 勋,李春辉:参与讨论,修改论文; 吴安华:设计论文思路和研究方案,修改论文; 高武强:设计研究方案,所有代码的技术实现,修改论文。
  • 基金资助:
    培育世界一流湘版科技期刊建设工程项目梯队项目“中国感染控制杂志”(2023ZL6012); 中国科学技术期刊编辑学会基金项目“基于AIGC的医学科技期刊智能编校与科普推广研究与实证”(cessp-2023-D-07)

Effectiveness evaluation of LLM-assisted editing of English abstracts in medical journals

ZUO Shuangyan1)()(), ZHAI Ruonan1), CHEN Yuhua1), WU Shanshan1), REN Nan2,3), HUANG Xun2,3), LI Chunhui2), WU Anhua1,2), GAO Wuqiang2,3,4)()()   

  1. 1) Editorial Department of Chinese Journal of Infection Control,Xiangya Medical Academic Promotion Center,Xiangya Hospital,Central South University
    2) Center for Healthcare-Associated Infection Control,Xiangya Hospital,Central South University,87 Xiangya Road,Kaifu District,Changsha 410008,China
    3) National Medical Institution Infection Surveillance System of China,87 Xiangya Road,Kaifu District,Changsha 410008,China
    4) Information Center,Xiangya Hospital,Central South University,87 Xiangya Road,Kaifu District,Changsha 410008,China
  • Received:2025-05-03 Revised:2025-09-20 Online:2025-10-25 Published:2025-11-14

摘要:

目的 系统评估大语言模型(large language model,LLM)在辅助医学期刊英文摘要编校中的实际效能,并凝练可落地的编辑工作流程。 方法 选取11种代表性医学期刊的100篇中英文摘要,构建基于“术语-语法-规范-表达-逻辑”五维框架的英文摘要评估体系,对比3种LLM对医学期刊英文摘要问题的自动检测能力,并实施双盲人工复核。 结果 3种LLM累计发现1197个问题,人工审核后共采纳1113个(93%)修改意见。LLM能有效检出英文摘要中存在的多样化问题。这些问题以术语准确性为主(408个,占36.7%),其次是表达地道性、语法正确性和学术规范性。不同LLM在评估维度上呈现一定的互补优势,协同使用可全面提升英文摘要编校质量。 结论 LLM是赋能英文摘要编校的有效辅助工具,可提升工作效率与文本质量,实践策略包括优化输入指令、多模型互补集成、结构化评估框架、明确人机边界以及坚守伦理底线等。

关键词: 大语言模型, 医学期刊, 英文摘要, 编校质量, 人机协作

Abstract:

Purposes To systematically evaluate the effectiveness of large language models (LLMs) in editing English abstracts for medical journals and to distill actionable editorial workflow guidance. Methods We selected 100 paired Chinese-English abstracts from 11 representative medical journals and established a five-dimensional evaluation framework (terminology, grammar, conventions, expression, and logic). We compared the automatic error-detection performance of three LLMs, followed by double-blind human adjudication. Findings The three LLMs collectively identified 1197 issues, of which 1113 (93%) were confirmed after double-blind review. Detected problems were dominated by terminological accuracy (408, 36.7%), followed by idiomatic expression, grammatical correctness, and adherence to academic conventions. Different LLMs exhibited complementary strengths across evaluation dimensions; integrated use can enhance overall abstract quality. Conclusions LLMs are effective assistive tools for English-abstract editing in medical journals, improving editorial efficiency and textual quality. Recommended practices include refined prompt design, multi-model integration, structured assessment frameworks, clear human–machine role boundaries, and strict adherence to ethical standards.

Key words: Large language model, Medical journal, English abstract, Copyediting and proofreading quality, Human-machine collaboration