中国科技期刊研究 ›› 2025, Vol. 36 ›› Issue (2): 135-143. doi: 10.11946/cjstp.202408230924

• AIGC专题 • 上一篇    下一篇

人工智能背景下科技期刊新质生产力内涵、要素、模型、价值转移重构及发展策略

张扬()()   

  1. 北京钢研柏苑出版有限责任公司,北京市海淀区学院南路76号 100081
  • 收稿日期:2024-08-23 修回日期:2025-01-05 出版日期:2025-02-15 发布日期:2025-03-05
  • 作者简介:

    张扬(ORCID:0000-0003-3047-2992),硕士,副编审,副总经理,E-mail:

Connotation, elements, model, value transfer reconstruction and development strategies of new quality productivity in scientific journals in the context of artificial intelligence

ZHANG Yang()()   

  1. Beijing Gangyan Baiyuan Publishing Co., Ltd., 76 Xueyuan South Road, Haidian District, Beijing 100081, China
  • Received:2024-08-23 Revised:2025-01-05 Online:2025-02-15 Published:2025-03-05

摘要:

【目的】 论述科技期刊在人工智能背景下如何构建和发展新质生产力,分析科技期刊新质生产力的内涵、要素及价值转移重构,在此基础上给出科技期刊新质生产力模型与发展策略。【方法】 分别从“新”和“质”2个维度分析科技期刊的新质生产力,从新技术、新经济、新业态解读“新”,从改革牵引力、创新驱动力、价值向心力解读“质”;在此基础上分析与科技期刊新质生产力匹配的劳动者、生产资料、劳动对象、生产关系和生态;基于“从人到AI”“从场景到行业大模型”“从科技期刊行业到所属科技行业”等3个维度分析科技期刊的价值转移与重构。【结果】 科技期刊可以从智能内容生产、审稿、编校,精准内容推荐与个性化服务,选题分析与趋势预测,自动化运营与智能决策支持,全域知识服务,AIGC全媒体内容形式,跨语言、跨文化全球化传播等方向构建新质生产力,实现科技期刊突破性变革并发挥独特价值。【结论】 在新质生产力背景下,重塑科技期刊的工作流程,进一步激发创造力,凸显平台价值,大幅增加数字资产价值,使品牌价值最大化,大幅提升市场竞争力和全球学术影响力,大幅提高科技产业的参与度和话语权,并最终实现科技期刊的高质量发展。

关键词: 新质生产力, 人工智能, AIGC, 高质量发展, 科技期刊

Abstract:

[Purposes] This paper discusses how scientific journals construct and develop new quality productivity in the era of artificial intelligence. It analyzes the connotation of the new quality productivity of scientific journals, as well as the restructuring of its elements and value transfer. On this basis, a model and development strategies for the new quality productivity of scientific journals are presented. [Methods] Analyze the new quality productivity of scientific journals from two dimensions of “newness” and “quality”. Interpret “newness” from new technologies, new economies and new business forms, and interpret “quality” from reform traction, innovation driving force and value centripetal force. On this basis, analyze the laborers, means of production, objects of labor, production relations and ecology that match the new quality productivity of scientific journals. Analyze the value transfer and reconstruction of scientific journals from three dimensions: from people to AIGC, from scenarios to industry large models, and from the scientific journal industry to the affiliated science and technology industry. [Findings] Scientific journals can build new quality productivity from directions such as intelligent content production, review, editing and proofreading, accurate content recommendation and personalized services, topic selection analysis and trend prediction, automated operation and intelligent decision support, global knowledge services, AIGC omnimedia content forms, cross-language and cross-cultural global communication, etc., to achieve breakthrough changes in scientific journals and exert unique value. [Conclusions] Against the backdrop of new quality productivity, we should reshape the workflow of scientific journals, further stimulate creativity, highlight the value of the platform, significantly increase the value of digital assets, maximize brand value, substantially enhance market competitiveness and global academic influence, greatly improve the level of participation and discourse power within the science and technology industry, and ultimately achieve high-quality development of scientific journals.

Key words: New quality productivity, Artificial intelligence, AIGC, High-quality development, Scientific journals