中国科技期刊研究 ›› 2024, Vol. 35 ›› Issue (10): 1425-1433. doi: 10.11946/cjstp.202404090351

• 质量建设 • 上一篇    下一篇

撤销论文特征识别——基于PubPeer平台质疑论文

林原1)()(), 林芳羽1), 张照芸1),*()(), 丁堃1), 林鸿飞2)   

  1. 1) 大连理工大学公共管理学院,辽宁省大连市甘井子区凌工路2号 116024
    2) 大连理工大学计算机科学与技术学院,辽宁省大连市甘井子区凌工路2号 116024
  • 收稿日期:2024-04-09 修回日期:2024-08-12 出版日期:2024-10-15 发布日期:2024-11-12
  • 通讯作者: 张照芸
  • 作者简介:

    林原(ORCID:0000-0001-7452-5270),博士,副教授,硕士生导师,E-mail:

    林芳羽,本科生;

    丁堃,博士,教授,博士生导师;

    林鸿飞,博士,教授,博士生导师。

    作者贡献声明: 林 原:提出研究方向,设计论文框架; 林芳羽:收集数据,进行实验,起草论文; 张照芸:参与论文撰写、修订; 丁 堃:修订、审核论文; 林鸿飞:审核论文。
  • 基金资助:
    国家自然科学基金项目“融合多源信息的学术推荐研究”(61976036)

Feature recognition of retracted papers: Based on papers questioned by PubPeer platform

LIN Yuan1)()(), LIN Fangyu1), ZHANG Zhaoyun1)()(), DING Kun1), LIN Hongfei2)   

  1. 1) School of Public Administration and Policy, Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
    2) School of Computer Science and Technology, Dalian University of Technology, 2 Linggong Road, Ganjingzi District, Dalian 116024, China
  • Received:2024-04-09 Revised:2024-08-12 Online:2024-10-15 Published:2024-11-12
  • Contact: ZHANG Zhaoyun

摘要:

【目的】

更科学准确地识别以及预测撤销论文的特征,更好地纠正科研失范、减少学术欺诈行为、保护科学的公平性。

【方法】

基于PubPeer平台上受质疑论文相关数据信息,经数据处理与筛选,建立包含1792篇完整论文数据的撤销论文数据集,分析该部分撤销论文自然属性和评论属性特征,并通过构建PubCancel模型进行撤销论文特征识别及准确性检验。

【结果】

构建的PubCancel模型可准确、有效地识别撤销论文,撤销论文状态验证准确率高达98.24%。该方法不仅对于评估论文质量具有重要的实际意义,也可为研究人员提供一种快速评估论文可信度的方法。

【结论】

研究PubPeer平台质疑论文中撤销论文的情况对学术预警研究有重要意义,应用撤销论文特征识别模型能够帮助期刊及编辑及时发现异常论文,规范论文发表并及时撤回问题论文,加强科研诚信建设。

关键词: 撤销论文, PubPeer, 特征识别, 随机森林, PubCancel

Abstract:

[Purposes]

This study aims to scientifically and accurately identify and predict the characteristics of retracted papers, better correct scientific misconduct, reduce academic fraud, and protect the integrity of science.

[Methods]

We collected data and information related to questioned papers from the PubPeer platform. After data processing and screening, a dataset of 1792 retracted papers with complete data was established. The natural and comment attributes of these retracted papers were analyzed, and a PubCancel model was developed to identify the features and assess the accuracy of the retracted papers.

[Findings]

The PubCancel model developed in this study accurately and effectively identifies the retracted papers, with an accuracy rate of 98.24%. This method has significant practical implications for evaluating paper quality and provides researchers with a fast way to assess paper credibility.

[Conclusions]

Studying the situation of retracted papers in questioned papers on the PubPeer platform is of great significance for academic warning research. The application of the feature recognition model of retracted papers can assist journals and editors in detecting abnormal papers promptly, standardizing paper publication processes, and promptly retracting problematic papers, thereby enhancing the integrity of scientific research.

Key words: Retracted paper, PubPeer, Feature recognition, Random forest, PubCancel