中国科技期刊研究 ›› 2024, Vol. 35 ›› Issue (11): 1580-1587. doi: 10.11946/cjstp.202411061208

• 质量建设 • 上一篇    下一篇

LLM辅助开放同行评议:元评审归纳生成研究

朱丽雅1)()(), 乐小虬1,2),*()(), 付芸1)   

  1. 1)中国科学院文献情报中心,北京市海淀区北四环西路33号 100190
    2)中国科学院大学经济与管理学院信息资源管理系,北京市海淀区北四环西路33号 100190
  • 收稿日期:2024-11-06 修回日期:2024-11-20 出版日期:2024-11-15 发布日期:2024-12-23
  • 通讯作者: 乐小虬
  • 作者简介:

    朱丽雅(ORCID:0000-0003-3293-6893),硕士,助理研究员,E-mail:

    付芸,博士,馆员。

    作者贡献声明: 朱丽雅:进行实验,撰写、修改论文; 乐小虬:提出研究方向,指导论文撰写,修改论文; 付 芸:分析实验,修改论文。
  • 基金资助:
    国家社会科学基金项目“人工智能赋能的基础研究代表作学术贡献循证评价学科参考系研究”(23BTQ102)

LLM assisted open peer review: A study on meta-review generation

ZHU Liya1)()(), LE Xiaoqiu1,2),*()(), FU Yun1)   

  1. 1) National Science Library, Chinese Academy of Sciences, 33 Beisihuan Xilu, Haidian District, Beijing 100190, China
    2) Department of Information Resources Management, School of Economics and Management, University of Chinese Academy of Sciences, 33 Beisihuan Xilu, Haidian District, Beijing 100190, China
  • Received:2024-11-06 Revised:2024-11-20 Online:2024-11-15 Published:2024-12-23
  • Contact: LE Xiaoqiu

摘要:

【目的】探索大语言模型(Large Language Model,LLM)技术在开放同行评议中的应用潜力,结合评审专家意见和作者回复数据,自动生成元评审(Meta-Review),辅助编辑快速归纳评审要点,助推开放同行评议过程向智能化方向发展。【方法】 基于LLM,利用少样本对比学习、自我反思等提示学习方法,识别评审专家和作者回复的论点和“疑问-回复”论点对,采用分步引导式方法指导LLM自动生成元评审。【结果】 通过合理的提示学习策略,LLM能够有效识别同行评议中的论点以及“疑问-回复”论点对,生成具有论证性结构的元评审内容,显著提升元评审生成的质量。【结论】 基于LLM的元评审归纳和生成可为优化开放同行评议流程和提高评审效率提供有效途径。

Abstract:

[Purposes] This study aims to explore the potential application of large language model (LLM) technology in open peer review. By combining the opinions of review experts and the response data of authors, a meta-review is automatically generated to assist editors in quickly summarizing the key points of review and promote the development of the open peer review process in an intelligent direction. [Methods] Based on the LLM, we utilized prompt learning methods such as few-shot contrastive learning and self-reflection to identify the arguments and "problem-reply" argument pairs between review experts and authors, and used a step-by-step guidance method to guide the model to automatically generate meta-review. [Findings] Through a reasonable prompt learning strategy, the LLM can effectively recognize the arguments and "problem-reply" argument pairs and generate meta-review content with an argumentative structure, which remarkably enhances the quality of meta-review generation. [Conclusions] Meta-review induction and generation based on LLM can offer an effective approach for optimizing the open peer review process and increasing the review efficiency.

中图分类号: