摘要:
【目的】 通过构建科技文献挖掘分析与服务的标准体系,提高科技文献中知识获取、融合和利用的质量和效率,推动科技期刊出版机构间的交流与合作,提升科研机构科技文献细粒度知识挖掘分析效率。
【方法】 以“层级—内容—体系—优化策略”为研究思路,从国家、行业、地方、团体、企业、国际标准6个层级入手,覆盖数据处理、知识挖掘、知识服务、情报分析、集成应用全流程,深入梳理和剖析科技文献挖掘分析与服务的标准体系现状和特征,并提出标准体系优化策略。
【结果】 科技文献挖掘分析与服务的标准体系呈现出多层级标准分治共融、多维内容标准交融一体、层级内容共建标准体系的特征。
【结论】 从体系化推进各层级标准制定、促进全流程内容体系发展、聚焦通用和领域知识对象标准构建等方面提出科技文献挖掘分析与服务标准体系的优化策略。
关键词:
科技文献,
标准体系,
数据标注,
知识挖掘,
优化策略
Abstract:
[Purposes] By constructing a standard system for mining, analysis, and service of scientific literature, this study aims to improve the quality and efficiency of knowledge acquisition, integration, and utilization in scientific literature, promote communication and cooperation among scientific journal publishing institutions, and enhance the efficiency of fine-grained knowledge mining and analysis of scientific literature in research institutions.
[Methods] Using the research approach of "hierarchy-content-system-optimization strategy", and starting from six levels: national, industry, local, group, enterprise, and international standards, covering the entire process of data processing, knowledge mining, knowledge services, intelligence analysis, and integrated application, we thoroughly examined and analyzed the current status and characteristics of the standard system for mining, analysis, and service of scientific literature, and proposed optimization strategies for the standard system.
[Findings] The standard system for mining, analysis, and service of scientific literature exhibits characteristics of multi-level standard separation and integration, multi-dimensional content standard integration, and hierarchical content co-construction.
[Conclusions] Optimization strategies for the standard system of scientific literature mining, analysis, and service are proposed from the perspectives of promoting the systematic development of standards at all levels, improving the development of the entire process content system, and focusing on the construction of universal and domain-knowledge object standards.
Key words:
Scientific literature,
Standard system,
Data annotation,
Knowledge mining,
Optimization strategy
曹晓丽, 李涵昱, 张智雄. 科技文献挖掘分析与服务标准体系建设研究[J]. 中国科技期刊研究, 2024, 35(10): 1374-1383.
CAO Xiaoli, LI Hanyu, ZHANG Zhixiong. Construction of a standard system for mining, analysis, and service of scientific literature[J]. Chinese Journal of Scientific and Technical Periodicals, 2024, 35(10): 1374-1383.